File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박성훈

Park, Sunghoon
Biochemical Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Gas-phase TCE Degradation in a Two-stage CSTR/TBR System Using Methylosinus trichosporium OB3b

Alternative Title
Methylosinus trichosporium OB3b를 이용한 2단계 CSTR/살수층 생물막 반응기에서 기상의 trichloroethylene(TCE) 분해
Author(s)
Choe, Yeong-BeomLee, Eun-YeolPark, Sunghoon
Issued Date
1999
URI
https://scholarworks.unist.ac.kr/handle/201301/65039
Fulltext
https://koreascience.kr/article/JAKO199900620330474.page
Citation
Korean Society for Biotechnology and Bioengineering Journal, v.14, no.4, pp.452 - 459
Abstract
A two-stage continuous stirred tank reactor (CSTR)/trickling biofilter reactor (TBR) system was developed for the degradation of gas-phase trichloroethlene (TCE) using Methylosinus trichoporium OB3b. Mrthylosinus trichosporium OB3b was immobilized on activated carbons in TBR and the microbial growth reactor of a CSTR was coupled for the reactivation of the deactivated cells during TCE degradation. The effect of operation variables on TCE conversion and degradation rate were studied. At inlet TCE concentrations ranging from 10 to 80 $\mu$mol/L, TCE degradation rate was increased up to 525 mg TCE/Lㆍday with 75% conversion. The TCE degradation rates were also increased with increse in broth recycle flow rate, gas flow rate and dilution rate. When the temperature of TBR was changed from 3$0^{\circ}C$ to 15$^{\circ}C$, TCE degradation rate and TCE conversion were increased due to the enhanced TCE transfer from gas-phase. The two-stage reactor system was found to be stable and has been operated for more than 270 days.

본 연구에서는 난분해성 물질인 기상의 TCE를 효과적으로 처리하기 위하여 CSTR과 TBR을 연결한 2단계 생물막 반응기를 제작ㆍ운전하였다. TBR에는 TCE 분해능이 탁월한 메탄자화균인 Methylosinus trichosporium OB3b를 활성탄에 고정화시켰고, 기상의 TCE를 유입부에 연속적으로 공급하여 분해시켰다. 개발된 반응기 시스템의 효율을 조사하기 위해 다양한 운전조건에서 TCE 분해속도, TCE 전화율 및 cMMO 활성변화 등을 조사하였다. 여러 가지의 유입부 TCE 농도에서 운전한 결과 80 $\mu$mol/L의 고농도까지 처리가 가능함을 알 수 있었고, TCE를 포함한 기체의 유속을 변화시켰을 때 유속이 증가함에 따라 낮은 유속(50~200 mL/min)에서는 직선적으로 TCE를 분해속도 및 전화율이 증가하다가 높은 유속(200~600 mL/min)에서는 일정하게 유지되었다. TBR의 온도를 달리하였을 때, 2$0^{\circ}C$의 낮은 온도에서 3$0^{\circ}C$의 높은 온도보다 TCE 전화율 및 분해속도가 증가되어 TBR에서의 TCE 분해반응이 물질전달 저해를 받음을 알 수 있었다. CSTR에서의 희석속도가 낮으면 TCE 분해속도와 전화율의 감소 및 sMMO 활성 저하 현상이 일어남을 관측할 수 있었고, TBR에서 TCE 분해 과정에서 불활성화된 sMMO 및 세포 활성을 효과적으로 재활성화시키기 위해서는 CSTR의 희석속도를 높이 유지해야함을 알 수 있었다. 약 270일 이상의 운전기간 동안 운전조건을 다양하게 변경시켜도 매우 안정되게 시스템이 유지됨을 알 수 있었고, 최고분해속도는 525 mg TCE/Lㆍday 정도로 높아 개발된 2단계 CSTR/TBR 시스템의 우수성을 알 수 있었다.
Publisher
한국생물공학회
ISSN
1225-7117

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.