File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽원진

Kwak, Won-Jin
Electrochemical Materials & System Design Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 14158 -
dc.citation.number 37 -
dc.citation.startPage 14150 -
dc.citation.title ACS SUSTAINABLE CHEMISTRY & ENGINEERING -
dc.citation.volume 8 -
dc.contributor.author Shin, Hyeon-Ji -
dc.contributor.author Hwang, Jang-Yeon -
dc.contributor.author Kwon, Hyun Jung -
dc.contributor.author Kwak, Won-Jin -
dc.contributor.author Kim, Sang-Ok -
dc.contributor.author Kim, Hyung-Seok -
dc.contributor.author Jung, Hun-Gi -
dc.date.accessioned 2023-12-21T17:06:32Z -
dc.date.available 2023-12-21T17:06:32Z -
dc.date.created 2023-07-14 -
dc.date.issued 2020-09 -
dc.description.abstract Owing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying-dealloying often results in pulverization, electrical contact loss, and unstable solid-electrolyte interphase (SEI) formation, leading to rapid capacity fading. We present a rational encapsulation strategy of a silicon-carbon (Si-C) composite as a high-performance anode material for lithium-ion batteries (LIBs). The Si-C composite material is prepared via a one-pot hydrothermal method by using silicon nanoparticles modified using an etching route and sucrose as a carbon precursor. The proposed Si-C composite material has a meso-macroporous structure and contains a large weight fraction of silicon nanoparticles (40 wt %) encapsulated in a micrometric carbon sphere (similar to 3 mu m). In the composite material, the carbon framework tightly encapsulates the silicon nanoparticles to the interior of the particle, which not only provides electrical conductivity but also decreases the stress/strain of the material during the alloying-dealloying process. The material demonstrates high initial capacity of 1300 mAh g(-1), excellent capacity retention of 90% after 200 cycles, and fast charging-discharging capability within 12 min. We believe that the proposed encapsulation strategy here will be helpful in developing a highenergy and low-cost Si-C composite anode. -
dc.identifier.bibliographicCitation ACS SUSTAINABLE CHEMISTRY & ENGINEERING, v.8, no.37, pp.14150 - 14158 -
dc.identifier.doi 10.1021/acssuschemeng.0c04828 -
dc.identifier.issn 2168-0485 -
dc.identifier.scopusid 2-s2.0-85092791917 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/64852 -
dc.identifier.wosid 000575352800029 -
dc.language 영어 -
dc.publisher American Chemical Society (ACS) -
dc.title Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary;Green & Sustainable Science & Technology;Engineering, Chemical -
dc.relation.journalResearchArea Chemistry;Science & Technology - Other Topics;Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Li-ion batteries -
dc.subject.keywordAuthor Hydrothermal synthesis -
dc.subject.keywordAuthor Silicon anode -
dc.subject.keywordAuthor Encapsulation -
dc.subject.keywordAuthor High energy -
dc.subject.keywordPlus SOLID-ELECTROLYTE INTERPHASE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus COMPOSITE ANODE -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus FLUOROETHYLENE CARBONATE -
dc.subject.keywordPlus CATHODE MATERIALS -
dc.subject.keywordPlus LI -
dc.subject.keywordPlus NANOCOMPOSITE -
dc.subject.keywordPlus FRAMEWORK -
dc.subject.keywordPlus DESIGN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.