File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김수현

Kim, Soo-Hyun
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Hydrogen Evolution Reaction by Atomic Layer-Deposited MoNx on Porous Carbon Substrates: The Effects of Porosity and Annealing on Catalyst Activity and Stability

Author(s)
Ramesh, RahulSawant, Sandesh Y.Nandi, Dip K.Kim, Tae HyunKim, Deok HyunHan, Seung-MinJang, YujinHa, Myoung GyuCho, Moo HwanYoon, TaehoKim, Soo-Hyun
Issued Date
2020-08
DOI
10.1002/cssc.202000350
URI
https://scholarworks.unist.ac.kr/handle/201301/64067
Fulltext
https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202000350
Citation
CHEMSUSCHEM, v.13, no.16, pp.4159 - 4168
Abstract
Molybdenum-based compounds are considered as a potential replacement for expensive precious-metal electrocatalysts for the hydrogen evolution reaction (HER) in acid electrolytes. However, coating of thin films of molybdenum nitride or carbide on a large-area self-standing substrate with high precision is still challenging. Here, MoNx is uniformly coated on carbon cloth (CC) and nitrogen-doped carbon (NC)-modified CC (NCCC) substrates by atomic layer deposition (ALD). The as-deposited film has a nanocrystalline character close to amorphous and a composition of approximately Mo2N with significant oxygen contamination, mainly at the surface. Among the as-prepared ALD-MoNx electrodes, the MoNx/NCCC has the highest HER activity (overpotential eta approximate to 236 mV to achieve 10 mA cm(-2)) owing to the high surface area and porosity of the NCCC substrate. However, the durability of the electrode is poor, owing to the poor adhesion of NC powder on CC. Annealing MoNx/NCCC in H-2 atmosphere at 400 degrees C improves both the activity and durability of the electrode without significant change in the phase or porosity. Annealing at an elevated temperature of 600 degrees C results in formation of a Mo2C phase that further enhances the activity (eta approximate to 196 mV to achieve 10 mA cm(-2)), although there is a huge reduction in the porosity of the electrode as a consequence of the annealing. The structure of the electrode is also systematically investigated by electrochemical impedance spectroscopy (EIS). A deviation in the conventional Warburg impedance is observed in EIS of the NCCC-based electrode and is ascribed to the change in the H+ ion diffusion characteristics, owing to the geometry of the pores. The change in porous nature with annealing and the loss in porosity are reflected in the EIS of H+ ion diffusion observed at high-frequency. The current work establishes a better understanding of the importance of various parameters for a highly active HER electrode and will help the development of a commercial electrode for HER using the ALD technique.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
1864-5631
Keyword (Author)
atomic layer depositionelectrocatalysiselectrochemical impedance spectroscopynitrides
Keyword
MOLYBDENUM NITRIDEELECTROCATALYTIC ACTIVITYIMPEDANCECARBIDENIDIFFUSIONNANOSTRUCTURESELECTROLYTEXPSTPR

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.