File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김동석

Kim, Dong Suk
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Liquid-State Dithiocarbonate-Based Polymeric Additives with Monodispersity Rendering Perovskite Solar Cells with Exceptionally High Certified Photocurrent and Fill Factor

Author(s)
Kim, KyusunHan, JiyeLee, SangsuKim, SoyeonChoi, Jin-MyungNam, Jeong-SeokKim, DawoonChung, InKim, Tae-DongManzhos, SergeiChoi, Seung JuSong, Ji WonKim, Dong SukDo, Jung YunJeon, Il
Issued Date
2023-04
DOI
10.1002/aenm.202203742
URI
https://scholarworks.unist.ac.kr/handle/201301/62481
Citation
ADVANCED ENERGY MATERIALS, v.13, no.14, pp.202203742
Abstract
Dithiocarbonate-based non-hygroscopic polymers with a glass transition temperature (T-g) and polydispersity index (PDI) of approximate to 4 degrees C and 1, respectively, are synthesized through living cationic ring-opening polymerization. These liquid-state polymers are characterized by monodispersity based on the low T-g and PDI, rendering remarkable miscibility with the perovskite precursors without aggregation. Accordingly, these polymers are added to perovskite solar cells (PSCs) to enhance their power conversion efficiency (PCE). The PCE of reference PSCs increases from 19.70% to 23.52% after direct addition of the synthesized polymer. This efficiency improvement is attributed to the considerable increases in short-circuit current density (J(SC)) and fill factor (FF), resulting from the augmented size and defect passivation of perovskite crystals induced by added polymers. In fact, the PCE and J(SC) of the devices measured in the laboratory and the certification center are the highest among the reported polymer-added PSCs, thanks to the great miscibility of the new polymers leading to the large amount addition which enables more thorough passivation among the grain boundaries. The improvement in open-circuit voltage falls short as compared to that in J(SC) and FF, ascribed to the relatively moderate interaction strength between perovskite materials and dithiocarbonate groups.
Publisher
WILEY-V C H VERLAG GMBH
ISSN
1614-6832
Keyword (Author)
ring-opening polymerizationperovskite solar cellspolymer passivationpolymeric additivessulfur-containing polymers
Keyword
SULFUR-RICH POLYMERSCARBON-DISULFIDECRYSTAL-GROWTHEFFICIENTENERGYLAYERSCOPOLYMERIZATIONPERFORMANCERING

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.