File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김정환

Kim, Junghwan
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation

Author(s)
Wang, JunjieHanzawa, KotaHiramatsu, HidenoriKim, JunghwanUmezawa, NaotoIwanaka, KokiTada, TomofumiHosono, Hideo
Issued Date
2017-11
DOI
10.1021/jacs.7b06279
URI
https://scholarworks.unist.ac.kr/handle/201301/62107
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.139, no.44, pp.15668 - 15680
Abstract
Inspired by the successful synthesis of alkaline-earth-metals-based electrides [Ca24Al28O64](4+) (e(-))(4) (C12A7:e(-)) and [Ca2N](+):e(-) and high-throughput database screening results, we explore the potential for new electrides to emerge in the Sr-P system through a research approach combining ab initio evolutionary structure searches and experimental validation. Through employing an extensive evolutionary structure search and first principles calculations, we first predict the new structures of a series of strontium phosphides: Sr5P3, Sr8P5, Sr3P2 and Sr4P3. Of these structures, we identify Sr5P3 and Sr8P5 as being potential electrides with quasi-one-dimensional (1D) and zero-dimensional (0D) character, respectively. Following these theoretical results, we present the successful synthesis of the new compound Sr5P3 and the experimental confirmation of its structure. Although, density functional calculations with the generalized gradient approximation predict Sr5P3 to be a metal, electrical conductivity measurement reveal semiconducting properties characterized by a distinct band gap, which indicates that the newly synthesized Sr5P3 is an ideal one-dimensional electride with the half-filled band by unpaired electrons. In addition to presenting the novel electride Sr5P3, we discuss the implications of its semiconducting nature for 1D electrides in general and propose a mechanism for the formation of electrides with an orbital level diagram based on first-principles calculations.
Publisher
American Chemical Society
ISSN
0002-7863

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.