BROWSE

Related Researcher

Author's Photo

Lee, Sang-Young
Energy Soft-Materials Lab (ESML)
Research Interests
  • Soft Materials for Energy Storage/ Conversion Systems

ITEM VIEW & DOWNLOAD

Control of water-channel structure and state of water in sulfonated poly(arylene ether Sulfone)/diethoxydimethylsilane in situ hybridized proton conductors and its influence on transport properties for DMFC membranes

Cited 22 times inthomson ciCited 22 times inthomson ci
Title
Control of water-channel structure and state of water in sulfonated poly(arylene ether Sulfone)/diethoxydimethylsilane in situ hybridized proton conductors and its influence on transport properties for DMFC membranes
Author
So, Soon YongHong, Young TaikKim, Sung ChulLee, Sang-Young
Keywords
Diethoxydimethylsilane; DMFC membranes; State of water; Sulfonated poly(arylene ether sulfone); Water-channel structure
Issue Date
2010-01
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF MEMBRANE SCIENCE, v.346, no.1, pp.131 - 135
Abstract
A new approach for noticeably improving the DMFC membrane transport properties of sulfonated poly(arylene ether sulfone) copolymers (SPAES) has been demonstrated, which is based on controlling the water-channel structure and the state of water by in situ hybridization of ORMOSIL (Organically Modified SILicates). Diethoxydimethylsilane (DEDMS) was employed as a functional ORMOSIL precursor. Its hydrophobic nature made it possible to adjust the hydrophilicity of the resulting hybrid membranes. An increase of DEDMS uptake into SPAES membranes allowed the water uptake to decrease and the water channels to become narrow and tortuous. The influence of DEDMS uptake on the state of water was investigated by measuring the characteristic melting peak of water at 0 °C. Based on this investigation, the dependence of water uptake on the state of water was quantitatively identified. A noteworthy observation is that the incorporation of DEDMS into SPAES was effective in suppressing the methanol crossover with slightly sacrificing the proton conductivity, resulting in the higher selectivity. This improvement in DFMC membrane transport properties was discussed in terms of the water-channel structure and the state of water.
URI
Go to Link
DOI
10.1016/j.memsci.2009.09.029
ISSN
0376-7388
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
2-s2.0-70450145287.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU