File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery

Author(s)
Choi, Eun-SunLee, Sang-Young
Issued Date
2011
DOI
10.1039/c1jm12246k
URI
https://scholarworks.unist.ac.kr/handle/201301/6158
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=81855226608
Citation
JOURNAL OF MATERIALS CHEMISTRY, v.21, no.38, pp.14747 - 14754
Abstract
We demonstrate a new silica (SiO2) nanoparticle/polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-coated polyethylene terephthalate (PET) nonwoven composite separator for a lithium-ion battery as a promising alternative to a commercialized polyethylene (PE) separator. A distinctive feature of the nonwoven composite separator is its porous structure, i.e. well-connected interstitial voids formed between close-packed SiO2 nanoparticles interconnected by PVdF-HFP binders. More notably, this unusual porous structure of the nonwoven composite separator can be tuned by controlling the SiO2 particle size (herein, 40 nm and 530 nm SiO2 powders are exploited). Such morphological variation of the nonwoven composite separator has a crucial influence on separator properties such as porosity, electrolyte wettability, and ionic conductivity. The PET nonwoven is employed as a physical support to prevent thermal shrinkage of the nonwoven composite separator. Based on this understanding of the separator characteristics, the effects of the SiO2 particle size-dependent, tunable porous structure of nonwoven composite separators on the electrochemical performance of cells are investigated. In comparison to a nonwoven composite separator containing 530 nm SiO2 particles as well as the conventional PE separator, the nonwoven composite separator incorporating 40 nm SiO2 particles provides superior cell performance owing to facile ion transport and retarded growth of cell impedance during cycling.
Publisher
ROYAL SOC CHEMISTRY
ISSN
0959-9428

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.