File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

변영재

Bien, Franklin
BICDL
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Subcutaneously implantable electromagnetic biosensor system for continuous glucose monitoring

Author(s)
Kim, SeongmunMalik, JagannathSeo, Jong MoCho, Young MinBien, Franklin
Issued Date
2022-10
DOI
10.1038/s41598-022-22128-w
URI
https://scholarworks.unist.ac.kr/handle/201301/60059
Citation
SCIENTIFIC REPORTS, v.12, pp.17395
Abstract
Continuous glucose monitoring systems (CGMS) are becoming increasingly popular in diabetes management compared to conventional methods of self-blood glucose monitoring systems. They help understanding physiological responses towards nutrition intake, physical activities in everyday life and glucose control. CGMS available in market are of two types based on their working principle. Needle type systems with few weeks lifespan (e.g., enzyme-based Freestyle Libre) and implant type system (e.g., fluorescence-based Senseonics) with few months of lifespan are commercially available. An alternate to both working methods, herein, we propose electromagnetic-based sensor that can be subcutaneously implanted and capable of tracking minute changes in dielectric permittivity owing to changes in blood glucose level (BGL). Proof-of-concept of proposed electromagnetic-based implant sensor has been validated in intravenous glucose tolerance test (IVGTT) conducted on swine and beagle in a controlled environment. Sensor interface modules, mobile applications, and glucose mapping algorithms are also developed for continuous measurement in a freely moving beagle during oral glucose tolerance test (OGTT). The results of the short-term (1 h, IVGTT) and long-term (52 h, OGTT) test are summarized in this work. A close trend is observed between sensor frequency and BGL during GTT experiments on both animal species.
Publisher
NATURE PORTFOLIO
ISSN
2045-2322
Keyword
DIABETES-MELLITUS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.