File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신관섭

Shin, GwanSeob
Ergonomics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

The effects of a sloped ground surface on trunk kinematics and L5/S1 moment during lifting

Author(s)
Shin, GwanSeobMirka, G
Issued Date
2004-05
DOI
10.1080/00140130310001653066
URI
https://scholarworks.unist.ac.kr/handle/201301/5903
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=2442660292
Citation
ERGONOMICS, v.47, no.6, pp.646 - 659
Abstract
There are many work environments that require workers to perform manual materials handling tasks on ground surfaces that are not perfectly flat (e.g. in agriculture, construction, and maritime workplaces). These sloped ground surfaces may have an impact on the lifting strategy/technique employed by the lifter, which may, in turn, alter the biomechanical loading of the spine. Describing the changes in kinematics and kinetics of the torso is the first step in assessing the impact of these changes and is the focus of the current research. Subjects' wholebody motions were recorded as they lifted a 10kg box while standing on two inclined surfaces (facing an upward slope: 10° and 20°), two declined surfaces (facing a downward slope: -10° and -20°), and a flat surface (0°) using three lifting techniques (leg lift, back lift and freestyle lift). These data were then used in a two-dimensional, five-segment dynamic biomechanical model (top-down) to evaluate the effect of these slopes on the net moment about the L5/S1 joint. The results of this study showed an interesting interaction effect wherein the net L5/S1 moment was relatively insensitive to changes in slope angle under the back lift condition, but showed a significant effect during the leg lift and freestyle lifting conditions. The results show that under the freestyle lifting condition the peak L5/S1 moment was significantly higher for the inclined surfaces as compared to the flat surfaces (6.8% greater) or declined surfaces (10.0% greater). Subsequent component analysis revealed that both trunk flexion angle and angular trunk acceleration were driving this response. Collectively, the results of this study indicate that ground slope angle does influence the lifting kinematics and kinetics and therefore needs to be considered when evaluating risk of low back injury in these working conditions.
Publisher
TAYLOR & FRANCIS LTD
ISSN
0014-0139

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.