File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재흥

Cho, Jaeheung
BIOCC at UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Helicity-driven chiral self-sorting supramolecular polymerization with Ag+: right- and left-helical aggregates

Author(s)
Ok, MiraeKim, Ka YoungChoi, HeekyoungKim, SeonghanLee, Shim SungCho, JaeheungJung, Sung HoJung, Jong Hwa
Issued Date
2022-03
DOI
10.1039/d1sc06413d
URI
https://scholarworks.unist.ac.kr/handle/201301/59022
Fulltext
https://pubs.rsc.org/en/content/articlelanding/2022/SC/D1SC06413D
Citation
CHEMICAL SCIENCE, v.13, no.11, pp.3109 - 3117
Abstract
The study of chiral self-sorting is extremely important for understanding biological systems and for developing applications for the biomedical field. In this study, we attempted unprecedented chiral self-sorting supramolecular polymerization accompanying helical inversion with Ag+ in one enantiomeric component. Bola-type terpyridine-based ligands (R-L-1 and S-L-1) comprising R- or S-alanine analogs were synthesized. First, R-L-1 dissolved in DMSO/H2O (1 : 1, v/v) forms right-handed helical fibers (aggregate I) via supramolecular polymerization. However, after the addition of AgNO3 (0.2-1.1 equiv.) to the R-L-1 ligand, in particular, it was found that aggregate II with left-handed helicity is generated from the [R-L-1(AgNO3)(2)] complex through the [R-(LAg)-Ag-1](+) complex via the dissociation of aggregate I by a multistep with an off pathway, thus demonstrating interesting self-sorting properties driven by helicity and shape discrimination. In addition, the [R-L-1(AgNO3)(2)] complex, which acted as a building block to generate aggregate III with a spherical structure, existed as a metastable product during the formation of aggregate II in the presence of 1.2-1.5 equiv. of AgNO3. Furthermore, the AFM and CD results of two samples prepared using aggregates I and III with different volume ratios were similar to those obtained upon the addition of AgNO3 to free R-L-1. These findings suggest that homochiral self-sorting in a mixture system occurred by the generation of aggregate II composed of the [R-(LAg)-Ag-1](+) complex via the rearrangement of both, aggregates I and III. This is a unique example of helicity- and shape-driven chiral self-sorting supramolecular polymerization induced by Ag+ starting from one enantiomeric component. This research will improve understanding of homochirality in complex biological models and contribute to the development of new chiral materials and catalysts for asymmetric synthesis.
Publisher
Royal Society of Chemistry
ISSN
2041-6520
Keyword
PATHWAY COMPLEXITYSILVER(I)POLYMERSTRANSFORMATIONFRAMEWORKSMODELDRUG

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.