File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

류동수

Ryu, Dongsu
Astrophysics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Insensitivity of a turbulent laser-plasma dynamo to initial conditions

Author(s)
Bott, A. F. A.Chen, L.Tzeferacos, P.Palmer, C. A. J.Bell, A. R.Bingham, R.Birkel, A.Froula, D. H.Katz, J.Kunz, M. W.Li, C.-K.Park, H-S.Petrasso, R.Ross, J. S.Reville, B.Ryu, DongsuSéguin, F. H.White, T. G.Schekochihin, A. A.Lamb, D. Q.Gregori, G.
Issued Date
2022-06
DOI
10.1063/5.0084345
URI
https://scholarworks.unist.ac.kr/handle/201301/58981
Citation
MATTER AND RADIATION AT EXTREMES, v.7, no.4, pp.046901
Abstract
It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, X-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and X-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos.
Publisher
CHINA ACAD ENGINEERING PHYSICS
ISSN
2468-2047
Keyword
MAGNETIC-FIELDSGENERATIONAMPLIFICATIONFUSION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.