BROWSE

Related Researcher

Author's Photo

Ding, Feng
IBS - Center for Multidimensional Carbon Materials (CMCM)
Research Interests
  • Theoretical methods development for materials studies.
  • The formation mechanism of various carbon materials, from fullerene to carbon nanotube and graphene.
  • Kinetics and thermodynamics of materials growth and etching.
  • The structure, properties and fundamentals of nanomaterials.
  • The experimental synthesis of carbon nanotubes.

ITEM VIEW & DOWNLOAD

Chemical environment dependent Stabilities, electronic properties and diffusions behaviors of intrinsic point defects in novel Two-Dimensional MoSi2N4 monolayer

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Chemical environment dependent Stabilities, electronic properties and diffusions behaviors of intrinsic point defects in novel Two-Dimensional MoSi2N4 monolayer
Author
Ma, HaoZhao, WenZhang, QianLiu, DongyuanRen, HaoZhu, HouyuChi, YuhuaDing, FengGuo, Wenyue
Issue Date
2022-08
Publisher
ELSEVIER
Citation
APPLIED SURFACE SCIENCE, v.592, pp.153214
Abstract
A novel 2D semiconductor, MoSi2N4 monolayer, was very recently successfully fabricated and shown great potential for future broad applications in nanoelectronic devices and catalysis. For the synthesis and application of the material, intrinsic point defects are required to be considered, because they are inevitably formed during the bottom-up synthesis and following substrate transfer process, and also can be intentionally introduced by defect engineering to modulate properties and explore applications of materials. Herein, eight types of intrinsic point defects including two vacancies (N mono-and di-vacancies; V-N(m) and V-N2(m)), four antisites (Si-Mo, Si-N(t), Mo-N(m) and Mo-Si) and two adatoms (Si-ada and Nada) are found to have highly thermodynamic stabilities in MoSi2N4 monolayer under various chemical environments. Electronic properties calculations suggest the existence of V-N(m) and V-N2(m) leads to the emergence of the recombination center, reducing the carrier lifetime and thus showing the potential for high-speed switching device applications. Si-N(t) and Siadadefected structures show p-type and n-type conducting characters, respectively, which can be explored for possible PN junction applications. Also, the existence of MoSi may induce unusual resistance-temperature dependence behavior, providing some chances to design high-mobility semiconductors. Combined with the migration behavior of point defects (monovacancies and adatoms), the Schottky defect formation mechanism of VN(m) could be reasonably explained. Besides, high migration barriers of monovacancy defects (VN(m), V-Si and V-Mo) demonstrate their higher kinetic stability in monolayer, compared with monovacancies in graphene and silicene. The migration of N adatom is relatively difficult than that of Si adatom, increasing opportunities to detect it in experiments. This work will provide insight into defect engineering of MoSi2N4 monolayer and the MA(2)Z(4) monolayer family for various applications.
URI
https://scholarworks.unist.ac.kr/handle/201301/58964
URL
https://www.sciencedirect.com/science/article/pii/S0169433222007759?via%3Dihub
DOI
10.1016/j.apsusc.2022.153214
ISSN
0169-4332
Appears in Collections:
MSE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU