File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

최경진

Choi, Kyoung Jin
Energy Conversion Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 107117 -
dc.citation.title NANO ENERGY -
dc.citation.volume 96 -
dc.contributor.author Cao, Chen Tian -
dc.contributor.author Kim, Sun-Woo -
dc.contributor.author Kim, Hee Jun -
dc.contributor.author Purbia, Rahul -
dc.contributor.author Kim, Sang Heon -
dc.contributor.author Kim, Dokyoung -
dc.contributor.author Choi, Kyoung Jin -
dc.contributor.author Park, Hyesung -
dc.contributor.author Baik, Jeong Min -
dc.date.accessioned 2023-12-21T14:09:22Z -
dc.date.available 2023-12-21T14:09:22Z -
dc.date.created 2022-04-29 -
dc.date.issued 2022-06 -
dc.description.abstract ABSTR A C T A bifunctional electrocatalyst interface requires superior charge transfer and good electrical conductivity to produce a water splitting reaction that is overall efficient and stable. In the context of engineering the interfacial band alignment, we demonstrate a novel and straightforward approach to control the electrochemical activity of the bifunctional catalysts with precision by bridging conductive N-doped graphene quantum dots (N-GQDs, 2-3 nm) between La0.5Sr0.5CoO3-delta (LSC) and MoSe2 interfaces. The N-GQDs govern the charge transfer process at the interface, exhibiting higher Co3+ cations and metallic 1 T-MoSe2 phase-transition compared to those of LSC and LSC-MoSe2 composites. As a result, the optimized LSC-N-GQDs-MoSe2 electrocatalyst possessed a lower over -potential, Tafel slope, and charge transfer resistance in HER and OER than pure and LSC-MoSe2 electrocatalysts in an alkaline solution. The Tafel slopes (64 mV & BULL;dec(-1) and 51 mV & BULL;dec(-1) for HER and OER respectively) are smaller than those of current solutions that are commercially available, showing a higher performance at a high current density of 500 mA & BULL;cm(-2) with a long-term 24 h stability test. The key design of the current study is based on conductive bridging in the bifunctional catalyst to improve the interfacial charge transfer and electrochemical reaction. -
dc.identifier.bibliographicCitation NANO ENERGY, v.96 -
dc.identifier.doi 10.1016/j.nanoen.2022.107117 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-85125861852 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/58371 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285522001987?via%3Dihub -
dc.identifier.wosid 000781269200004 -
dc.language 영어 -
dc.publisher ELSEVIER -
dc.title N-doped graphene quantum dots as charge-transfer-bridge at LaSrCoO/MoSe2 heterointerfaces for enhanced water splitting -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Bifunctional electrocatalyst -
dc.subject.keywordAuthor Perovskite -
dc.subject.keywordAuthor MoSe2 -
dc.subject.keywordAuthor Interfacial band alignment engineering -
dc.subject.keywordAuthor N -doped graphene quantum dots -
dc.subject.keywordPlus EFFICIENT BIFUNCTIONAL CATALYST -
dc.subject.keywordPlus OXYGEN EVOLUTION REACTION -
dc.subject.keywordPlus HYDROGEN EVOLUTION -
dc.subject.keywordPlus MOSE2 NANOSHEETS -
dc.subject.keywordPlus CARBON SPHERES -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus COBALT -
dc.subject.keywordPlus NANORIBBONS -
dc.subject.keywordPlus VACANCIES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.