BROWSE

Related Researcher

Author's Photo

Ding, Feng
IBS - Center for Multidimensional Carbon Materials (CMCM)
Research Interests
  • Theoretical methods development for materials studies.
  • The formation mechanism of various carbon materials, from fullerene to carbon nanotube and graphene.
  • Kinetics and thermodynamics of materials growth and etching.
  • The structure, properties and fundamentals of nanomaterials.
  • The experimental synthesis of carbon nanotubes.

ITEM VIEW & DOWNLOAD

Mechanism of alcohol chemical vapor deposition growth of carbon nanotubes: Catalyst oxidation

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Mechanism of alcohol chemical vapor deposition growth of carbon nanotubes: Catalyst oxidation
Author
McLean, BenMitchell, IzaacDing, Feng
Issue Date
2022-05
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CARBON, v.191, pp.1 - 9
Abstract
Alcohol chemical vapor deposition (ACVD) was established as one of the most promising methods for single-walled carbon nanotube (SWCNT) growth almost two decades ago however the mechanisms behind its success remain elusive. To unveil the mechanism of SWCNT growth via ACVD, we employed density functional tight binding molecular dynamics simulations, supplying ethanol to a Fe nanoparticle. Here we demonstrate the oxidation of the Fe catalyst with varying supply rates of ethanol and how the catalyst composition is controlled by the reaction pathways mediated by the hydroxyl OH radical. Following ethanol dissociation on Fe and subsequent O dissolution, the catalyst becomes oxidized and the mobility and availability of Fe to bond with C are reduced. However, SWCNT growth is promoted via the key reaction pathways of the hydroxyl H; controlling the catalyst composition through the formation and release of H2O and H-2. These reaction pathways also demonstrate how active growth species such as ethylene can be formed preferentially to ethane from ethanol dissociation. This work provides important insight into the mechanism of how the catalyst composition changes during ACVD and can be extended to understand the catalyst nature during other O-assisted SWCNT growth processes such as H2O-assisted supergrowth and CO/CO2-promoted growth. (C) 2022 Elsevier Ltd. All rights reserved.
URI
https://scholarworks.unist.ac.kr/handle/201301/57651
URL
https://www.sciencedirect.com/science/article/pii/S0008622322000550?via%3Dihub
DOI
10.1016/j.carbon.2022.01.046
ISSN
0008-6223
Appears in Collections:
MSE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU