File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform

Author(s)
Rothert, ADeo, SKMillner, LPuckett, LGMadou, MarkDaunert, S
Issued Date
2005-07
DOI
10.1016/j.ab.2004.10.048
URI
https://scholarworks.unist.ac.kr/handle/201301/5758
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=20444395435
Citation
ANALYTICAL BIOCHEMISTRY, v.342, no.1, pp.11 - 19
Abstract
Biosensing systems such as reporter-gene-based whole-cell assays are increasingly finding applications in biological and environmental screening. A whole-cell approach to such analyses can provide valuable information about the bioavailable level of a compound of interest. These biosensing systems rely on the molecular recognition of a specific analyte by a regulatory protein and, therefore, can detect low levels of the target analyte. In this study, Escherichia coli cells containing plasmid pSD10 were engineered to sense the model target analytes arsenite and antimonite, the target analytes in this study. The biosensing system takes advantage of the recognition of the regulatory protein, ArsR, for arsenite and antimonite to produce the reporter protein, which in this case is GFPuv. The fluorescence emitted by the GFPuv in the cells can be directly related to the concentration of the analyte in the cell, making this biosensing system useful in the detection of arsenite and/or antimonite in a variety of samples. Miniaturization of biosensing systems can further enhance their utility by decreasing reagent consumption and analysis time and by allowing for the high-throughput screening of samples. To that end, we employed a microcentrifugal microfluidics platform that has low power, space, and reagent requirements, increased speed of detection, and the potential for portability. Herein, we demonstrate for the first time the adaptation of a whole-cell sensing system to a microcentrifugal microfluidics platform. Moreover, we were able to detect our target analytes in a rapid and sensitive manner compared to conventional sensing methods
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
ISSN
0003-2697
Keyword (Author)
reporter gene assayarseniccompact disc microfluidics platform
Keyword
ARS OPERONIDENTIFICATIONARSENITEDEVICESFABRICATIONSEPARATIONBACTERIARECEPTORAGONISTSPROTEIN

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.