File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김진영

Kim, Jin Young
Next Generation Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

How Heteroatom Substitution in Donor-Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells

Author(s)
Gallaher, Joseph K.Pugliese, Silvina N.Uddin, Mohammad AfsarLee, Tack HoKim, Jin YoungWoo, Han YoungHodgkiss, Justin M.
Issued Date
2021-12
DOI
10.1021/acs.jpcc.1c07641
URI
https://scholarworks.unist.ac.kr/handle/201301/57320
Fulltext
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c07641
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.125, no.48, pp.26590 - 26600
Abstract
Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor-acceptor copolymer causes such large variations in the photovoltaic parameters, which cannot be explained considering the variations in the optical band gap alone. Our study applies broadband transient absorption spectroscopy to a series of low-band gap copolymers, wherein the S-position of the benzothiadiazole in the parent polymer structure is substituted for an oxygen (i.e., benzooxadiazole) and selenium (i.e., benzoselenadiazole). Our thin-film morphology measurements reveal unfavorable packing of the oxygen- and selenium-containing polymers near the interfaces with [6,6]-phenyl-C-71-butyric acid methyl ester (PCBM) or in intermixed regions. We explain the device performance differences based upon a sub-optimal blend morphology, resulting in suppressed dissociation of charge-transfer states and, concomitantly, high geminate recombination rates for these systems. Furthermore, the heavy-atom effect of the selenium-containing polymer facilitates access to the triplet manifold. We find that triplet state formation can initially be circumvented by fast charge photogeneration in the finely intermixed morphology of the polymer:PCBM blend; however, this morphology also prevents charge dissociation and ultimately results in recombination to form triplet exciton states. These results provide valuable insights into how heteroatom substitutions affect the thin-film morphology and severe photocurrent loss pathways in polymer solar cells.
Publisher
AMER CHEMICAL SOC
ISSN
1932-7447
Keyword
CONJUGATED POLYMERSSEMICONDUCTING POLYMERSPHASE-SEPARATIONTRANSFER STATESSMALL MOLECULESTRIPLET-STATESMCR-ALSPERFORMANCERECOMBINATIONBENZOTHIADIAZOLE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.