BROWSE

Related Researcher

Author's Photo

Tlusty, Tsvi
Living and Soft Matter Theory Group
Research Interests
  • Systems biology, non-equilibrium physics, physical biology, molecular information, proteins

ITEM VIEW & DOWNLOAD

Slowest-first protein translation scheme: Structural asymmetry and co-translational folding

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Slowest-first protein translation scheme: Structural asymmetry and co-translational folding
Author
McBride, John M.Tlusty, Tsvi
Issue Date
2021-12
Publisher
CELL PRESS
Citation
BIOPHYSICAL JOURNAL, v.120, no.24, pp.5466 - 5477
Abstract
Proteins are translated from the N to the C terminus, raising the basic question of how this innate directionality affects their evolution. To explore this question, we analyze 16,200 structures from the Protein Data Bank (PDB). We find remarkable enrichment of α helices at the C terminus and β strands at the N terminus. Furthermore, this α−β asymmetry correlates with sequence length and contact order, both determinants of folding rate, hinting at possible links to co-translational folding (CTF). Hence, we propose the “slowest-first” scheme, whereby protein sequences evolved structural asymmetry to accelerate CTF: the slowest of the cooperatively folding segments are positioned near the N terminus so they have more time to fold during translation. A phenomenological model predicts that CTF can be accelerated by asymmetry in folding rate, up to double the rate, when folding time is commensurate with translation time; analysis of the PDB predicts that structural asymmetry is indeed maximal in this regime. This correspondence is greater in prokaryotes, which generally require faster protein production. Altogether, this indicates that accelerating CTF is a substantial evolutionary force whose interplay with stability and functionality is encoded in secondary structure asymmetry. © 2021 Biophysical Society
URI
https://scholarworks.unist.ac.kr/handle/201301/55686
URL
https://www.sciencedirect.com/science/article/pii/S0006349521009930?via%3Dihub
DOI
10.1016/j.bpj.2021.11.024
ISSN
0006-3495
Appears in Collections:
PHY_Journal Papers
Files in This Item:
000734719100006.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU