BROWSE

Related Researcher

Author's Photo

Cho, Yoon-Kyoung
Integrated Nano-Biotech Lab (INBL)
Research Interests
  • Microfluidics, Lab-on-a-chip, personalized biomedical diagnostics, nanobioengineering

ITEM VIEW & DOWNLOAD

Dendritic Cell Migration Is Tuned by Mechanical Stiffness of the Confining Space

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Dendritic Cell Migration Is Tuned by Mechanical Stiffness of the Confining Space
Author
Choi, YongjunKwon, Jae-EunCho, Yoon-Kyoung
Issue Date
2021-11
Publisher
MDPI
Citation
CELLS, v.10, no.12, pp.3362
Abstract
The coordination of cell migration of immune cells is a critical aspect of the immune response to pathogens. Dendritic cells (DCs), the sentinels of the immune system, are exposed to complex tissue microenvironments with a wide range of stiffnesses. Recent studies have revealed the importance of mechanical cues in immune cell trafficking in confined 3D environments. However, the mechanism by which stiffness modulates the intrinsic motility of immature DCs remains poorly understood. Here, immature DCs were found to navigate confined spaces in a rapid and persistent manner, surveying a wide range when covered with compliant gels mimicking soft tissues. However, the speed and persistence time of random motility were both decreased by confinement in gels with higher stiffness, mimicking skin or diseased, fibrotic tissue. The impact of stiffness of surrounding tissue is crucial because most in vitro studies to date have been based on cellular locomotion when confined by microfabricated polydimethylsiloxane structures. Our study provides evidence for a role for environmental mechanical stiffness in the surveillance strategy of immature DCs in tissues.
URI
https://scholarworks.unist.ac.kr/handle/201301/54954
URL
https://www.mdpi.com/2073-4409/10/12/3362
DOI
10.3390/cells10123362
ISSN
2073-4409
Appears in Collections:
BME_Journal Papers
Files in This Item:
000736240600001.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU