File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries

Author(s)
Sun, H. HohyunKim, Un-HyuckPark, Jeong-HyeonPark, Sang-WookSeo, Dong-HwaHeller, AdamMullins, C. BuddieYoon, Chong S.Sun, Yang-Kook
Issued Date
2021-11
DOI
10.1038/s41467-021-26815-6
URI
https://scholarworks.unist.ac.kr/handle/201301/54807
Fulltext
https://www.nature.com/articles/s41467-021-26815-6
Citation
NATURE COMMUNICATIONS, v.12, no.1, pp.6552
Abstract
Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g−1. Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants.
Publisher
Nature Publishing Group
ISSN
2041-1723
Keyword
STRUCTURAL STABILITYELECTROCHEMICAL PROPERTIESSUPEREXCHANGE INTERACTIONENERGY-DENSITYLITHIUMSURFACELINIO2R(3)OVER-BAR-MPERFORMANCEPHASE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.