File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 6552 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 12 -
dc.contributor.author Sun, H. Hohyun -
dc.contributor.author Kim, Un-Hyuck -
dc.contributor.author Park, Jeong-Hyeon -
dc.contributor.author Park, Sang-Wook -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Heller, Adam -
dc.contributor.author Mullins, C. Buddie -
dc.contributor.author Yoon, Chong S. -
dc.contributor.author Sun, Yang-Kook -
dc.date.accessioned 2023-12-21T15:07:54Z -
dc.date.available 2023-12-21T15:07:54Z -
dc.date.created 2021-11-17 -
dc.date.issued 2021-11 -
dc.description.abstract Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g−1. Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.12, no.1, pp.6552 -
dc.identifier.doi 10.1038/s41467-021-26815-6 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85118986048 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/54807 -
dc.identifier.url https://www.nature.com/articles/s41467-021-26815-6 -
dc.identifier.wosid 000718060500012 -
dc.language 영어 -
dc.publisher Nature Publishing Group -
dc.title Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus STRUCTURAL STABILITY -
dc.subject.keywordPlus ELECTROCHEMICAL PROPERTIES -
dc.subject.keywordPlus SUPEREXCHANGE INTERACTION -
dc.subject.keywordPlus ENERGY-DENSITY -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus LINIO2 -
dc.subject.keywordPlus R(3)OVER-BAR-M -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus PHASE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.