BROWSE

Related Researcher

Author's Photo

Ryu, Dongsu
Astrophysics Lab
Research Interests
  • Shock waves and turbulence in clusters of galaxies
  • Origin and evolution of magnetic fields and cosmic rays in the universe
  • Plasma astrophysical phenomena in the large-scale structure of the universe

ITEM VIEW & DOWNLOAD

Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

Cited 1 times inthomson ciCited 0 times inthomson ci
Title
Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data
Author
Akahori, TakuyaGaensler, B.M.Ryu, Dongsu
Issue Date
2014-08
Publisher
IOP PUBLISHING LTD
Citation
ASTROPHYSICAL JOURNAL, v.790, no.2, pp.1 - 10
Abstract
Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detected in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m -2.
URI
https://scholarworks.unist.ac.kr/handle/201301/5441
URL
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84904562058
DOI
10.1088/0004-637X/790/2/123
ISSN
0004-637X
Appears in Collections:
PHY_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU