Image dipole effects are highly dependent on the polarization direction, constructive (destructive) interference between real and image dipoles for the vertically (horizontally) aligned one in the vicinity of metal surfaces, respectively. This polarization-reversal of the image dipole effects is quantitatively investigated by using a gold nanoparticle functionalized tip as a local dipolar scatterer and a propagating surface plasmon polariton as an excitation source of dipoles. The polarization-resolved detection technique is applied to separate the radiations of the vertical and the horizontal dipoles from each other. In our study, the image dipole effects on the far-field detected signals are fully explained by the Fabry-Perot like interference between the radiations from the real and the image dipoles, and by considering the finite size effects of the gold nanoparticle.