File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

RuoffRodney Scott

Ruoff, Rodney S.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility

Author(s)
Beal, Colin M.Hebner, Robert E.Webber, Michael E.Ruoff, Rodney S.Seibert, A. Frank
Issued Date
2012-06
DOI
10.1007/s12155-011-9128-4
URI
https://scholarworks.unist.ac.kr/handle/201301/54253
Fulltext
https://link.springer.com/article/10.1007%2Fs12155-011-9128-4
Citation
BIOENERGY RESEARCH, v.5, no.2, pp.341 - 362
Abstract
This study is an experimental determination of the energy return on investment (EROI) for algal biocrude production at a research facility at the University of Texas at Austin (UT). During the period of this assessment, algae were grown at several cultivation scales and processed using centrifugation for harvesting, electromechanical cell lysing, and a microporous hollow fiber membrane contactor for lipid separation. The separated algal lipids represent a biocrude product that could be refined into fuel and the post-extraction biomass could be converted to methane. To determine the EROI, a second-order analysis was conducted, which includes direct and indirect energy flows, but does not include energy expenses associated with capital investments. The EROI for the production process evaluated here was significantly less than 1, however, the majority of the energy consumption resulted from non-optimized growth conditions. While the experimental results do not represent an expected typical case EROI for algal fuels, the approach and end-to-end experimental determination of the different inputs and outputs provides a useful outline of the important parameters to consider in such an analysis. The Experimental Case results are the first known experimental energy balance for an integrated algal biocrude production facility, and as such, are expected to be helpful for setting research and development priorities. In addition to the Experimental Case (based on direct measurements), three analytical cases were considered in this work: (1) a Reduced (Inputs) Case, (2) a Highly Productive Case, and (3) a Literature Model. The Reduced (Inputs) Case and the Highly Productive Case speculate the energy use for a similar system in an improved, commercial-scale production setting. The Literature Model is populated with relevant data that have previously been reported in the literature. For the Experimental Case, Reduced Case, Highly Productive Case, and Literature Model, the estimated second-order EROI was 9.2 x 10(-4), 0.074, 0.22, and 0.35, respectively. These results were dominated by growth inputs (96%, 89%, 87%, and 61% of the total energy requirement, respectively). Furthermore, the EROI was adjusted using quality factors that were calculated according to the price of each input, yielding a quality-adjusted EROI that parallels a partial financial return on investment analysis. For the Experimental Case, the Reduced Case, and the Highly Productive Case, the quality-adjusted EROI was 9.2 x 10(-5), 0.013, and 0.36, respectively.
Publisher
SPRINGER
ISSN
1939-1234
Keyword (Author)
AlgaeEnergy return on investmentEnergy balanceNet energy ratioBiofuelBiodiesel
Keyword
LIFE-CYCLE ASSESSMENTNET ENERGYBIODIESEL PRODUCTIONMICROALGAEBIOMASSFRAMEWORKRECOVERYBIOFUELSETHANOLLIPIDS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.