File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

조재원

Cho, Jaeweon
Sense Laboratory
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Critical flux on a submerged membrane bioreactor for nitrification of source separated urine

Author(s)
Jiang, JiaxiPhuntsho, SherubPathak, NirenkumarWang, QilinCho, JaeweonShon, Ho Kyong
Issued Date
2021-09
DOI
10.1016/j.psep.2021.07.039
URI
https://scholarworks.unist.ac.kr/handle/201301/53996
Fulltext
https://www.sciencedirect.com/science/article/pii/S0957582021004109?via%3Dihub
Citation
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, v.153, pp.518 - 526
Abstract
Membrane fouling is the biggest challenge in membrane based technology operation. Studies on critical flux mainly focused on membrane bioreactor for municipal wastewater and/or greywater treatment, which can significantly differ from the ultrafiltration membrane bioreactor (UF-MBRs) to treat source separated urine. In this work, the inhibitory factors on nitrifying bacteria activity were investigated for fast acclimation of nitrifying bacteria with high ammonium concentration and optimization of a high-rate partial nitrification MBR. The maximum nitrification rate of 447 +/- 50 mgN L-1 d(-1) was achieved when concentration of ammonia in feed urine is approximately 4006.3 +/- 225.8 mg N L-1 by maintaining desired pH around 6.2 and FA concentrations below 0.5 mgL(-1). Furthermore, for the first time, the impact of different operational and filtration conditions (i.e. aeration intensity, filtration method, imposed flux, intermittent relaxation, biomass concentration) on the reversibility of membrane fouling was carried out for enhancement of membrane flux and fouling mitigation. Fouling mechanisms for minor irreversible fouling observed under sub-critical condition were pore blocking and polarization. To mitigate membrane fouling, the UF module with effective membrane surface area of 0.02 m(2) is recommended to be operated at the aeration intensity of 0.4 m 3 h(-1), intermittent relaxation of 15 min, biomass concentration of 3.5 g L-1. (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Publisher
ELSEVIER
ISSN
0957-5820
Keyword (Author)
Submerged ultrafiltration membrane bioreactor (UF-MBR)Critical fluxCritical flux for irreversibilityFouling reversibilitySource separated urineImproved flux-step method
Keyword
AMMONIA-OXIDIZING BACTERIACOMPLETE NUTRIENT RECOVERYWASTE-WATERFOULING CONTROLINHIBITIONRESILIENCEREMOVALNITRITE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.