BROWSE

Related Researcher

Author's Photo

Kim, Jin Young
Next Generation Energy Laboratory
Research Interests
  • Polymer solar cells, QD solar cells, organic-inorganic hybrid solar cells, perovskite solar cells, OLEDs, PeLEDs, organic FETs

ITEM VIEW & DOWNLOAD

Planar Organic Bilayer Heterojunctions Fabricated on Water with Ultrafast Donor-to-Acceptor Charge Transfer

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Planar Organic Bilayer Heterojunctions Fabricated on Water with Ultrafast Donor-to-Acceptor Charge Transfer
Author
Lee, Tack HoPark, Won-WooPark, Song YiCho, ShinukKwon, Oh-HoonKim, Jin Young
Issue Date
2021-06
Publisher
WILEY-V C H VERLAG GMBH
Citation
SOLAR RRL, pp.2100326
Abstract
Herein, planar heterojunctions comprising a nonfullerene small molecular acceptor (NFA) and a polymer donor are demonstrated by transferring polymer films on a water surface on top of NFA layers. So far, most solution-processed layer-by-layer architectures have been reported as sequentially deposited bulk heterojunctions or pseudo-bilayers because mixed regions at the donor/acceptor interface are inevitable in these methods. By virtue of the unique properties of conjugated polymers such as hydrophobicity and spontaneous film formation on a water surface, the fabrication of NFA/polymer bilayer nanostructures is clearly demonstrated by dramatically simplified methods. These bilayers are successfully rendered into bilayer organic solar cells achieving a power conversion efficiency of up to 7.47%. This reflects that these bilayers have appropriate morphological and optoelectrical properties to be operated as photoactive layers in photovoltaic devices. Further, ultrafast charge transfer from the polymer donor to the NFA and fast carrier mobility are investigated by transient-absorption spectroscopy and photoinduced charge-extraction measurements. Fast carrier dynamics are observed, which are essential for the efficient harvest of excitons in photovoltaic devices. It is believed that the formation of planar heterojunctions on water can offer technical diversity for the fabrication methods of the photovoltaic devices.
URI
https://scholarworks.unist.ac.kr/handle/201301/53142
URL
https://onlinelibrary.wiley.com/doi/10.1002/solr.202100326
DOI
10.1002/solr.202100326
ISSN
2367-198X
Appears in Collections:
CHM_Journal Papers
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU