BROWSE

Related Researcher

Author's Photo

Cho, Kyung Hwa
Water-Environmental Informatics Lab (WEIL)
Research Interests
  • Water Quality Monitoring and Modeling, Water Treatment Process Modeling

ITEM VIEW & DOWNLOAD

Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation
Author
Baek, Sang-SooKwon, Yong SungPyo, JongCheolChoi, JungminKim, Young OkCho, Kyung Hwa
Issue Date
2021-03
Publisher
ELSEVIER
Citation
HARMFUL ALGAE, v.103, pp.102007
Abstract
Alexandrium catenella (A. catenella) is a notorious algal species known to cause paralytic shellfish poisoning (PSP) in Korean coastal waters. There have been numerous studies on its temporal and spatial blooms in Korea. However, its bloom dynamics have not been fully understood because of the complexity in physical, chemical, and biological environments. This study aims to identify the factors that influence A. catenella blooms by applying a numerical model and machine learning. Intensive monitoring of A. catenella was conducted to investigate temporal variations in its population and its spatial distribution in the area with frequent occurrences of PSP bloom initiation. Moreover, a numerical model was built to analyze the ocean physical factors related to the bloom of A. catenella. Based on the information obtained from the monitored and simulated results, the decision tree (DT) method was applied to identify factors that caused the bloom. The outbreak of A. catenella was observed in the eastern coastal water of Geoje Island in 2017, recording a peak density of 4 x 104 (cell L-1). Retention time and particle scattering demonstrated that the physical force in 2017 was weaker than that in 2018, as shown by the smaller effects of advection and dispersion in 2017. The decision tree model showed that (1) water temperature below 17.21 degrees C was ideal for the growth of A. catenella, (2) phosphate influenced the growth of the species, and (3) cell density was accelerated with increasing retention time. The results from DT can contribute to the prediction of A. catenella blooms by determining the conditions that cause bloom initiation. Further, they can be used as a practical approach for mitigating HABs. Thus, machine learning and numerical simulation in this study can be a potential approach for effectively managing the bloom of A. catenella.
URI
https://scholarworks.unist.ac.kr/handle/201301/53015
URL
https://www.sciencedirect.com/science/article/pii/S1568988321000342?via%3Dihub
DOI
10.1016/j.hal.2021.102007
ISSN
1568-9883
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU