Strain-driven autonomous control of cation distribution for artificial ferroelectrics
Cited 0 times in
Cited 0 times in
- Title
- Strain-driven autonomous control of cation distribution for artificial ferroelectrics
- Author
- Sohn, Chang Hee; Gao, Xiang; Vasudevan, Rama K.; Neumayer, Sabine M.; Balke, Nina; Ok, Jong Mok; Lee, Dongkyu; Skoropata, Elizabeth; Jeong, Hu Young; Kim, Young-Min; Lee, Ho Nyung
- Issue Date
- 2021-04
- Publisher
- AMER ASSOC ADVANCEMENT SCIENCE
- Citation
- SCIENCE ADVANCES, v.7, no.18, pp.eabd7394
- Abstract
- In past few decades, there have been substantial advances in theoretical material design and experimental synthesis, which play a key role in the steep ascent of developing functional materials with unprecedented properties useful for next-generation technologies. However, the ultimate goal of synthesis science, i.e., how to locate atoms in a specific position of matter, has not been achieved. Here, we demonstrate a unique way to inject elements in a specific crystallographic position in a composite material by strain engineering. While the use of strain so far has been limited for only mechanical deformation of structures or creation of elemental defects, we show another powerful way of using strain to autonomously control the atomic position for the synthesis of new materials and structures. We believe that our synthesis methodology can be applied to wide ranges of systems, thereby providing a new route to functional materials.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/52913
- URL
- https://www.science.org/doi/10.1126/sciadv.abd7394
- DOI
- 10.1126/sciadv.abd7394
- ISSN
- 2375-2548
- Appears in Collections:
- PHY_Journal Papers
- Files in This Item:
-
000645464500006.pdf
Download
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.