File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

윤태식

Yoon, Tae-Sik
Nano Semiconductor Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Tracking defect type and strain relaxation in patterned Ge/Si(001) islands by x-ray forbidden reflection analysis

Author(s)
Richard, M. -I.Malachias, A.Rouviere, J. -L.Yoon, Tae-SikHolmstrom, E.Xie, Y. -H.Favre-Nicolin, V.Holy, V.Nordlund, K.Renaud, G.Metzger, T. -H.
Issued Date
2011-08
DOI
10.1103/PhysRevB.84.075314
URI
https://scholarworks.unist.ac.kr/handle/201301/50266
Citation
PHYSICAL REVIEW B, v.84, no.7
Abstract
Plastic relaxation and formation of defects are crucial issues in the epitaxial growth of nanoparticles and thin films. Indeed, defects generate local stress in the crystalline lattice, which affects their surroundings and may lead to undesired effects such as reduced charge-carrier lifetime or nonradiative recombinations. Here, we use a nondestructive method based on x-ray diffuse scattering close to forbidden reflections to identify the defect types with a high sensitivity and quantify their average size and strain field. Combined with transmission electron microscopy, it offers opportunities to track both ensemble average and single defects inside three-dimensional structures. These techniques have been applied to partially embedded and high-Ge-content (x(Ge) = 0.87 +/- 0.06) dots selectively grown in 20-nm-sized pits on Si(001) surfaces through openings in a SiO(2) template. The stress in the 20-nm-wide Ge islands is relaxed not only by interfacial dislocations but also by microtwins and/or stacking faults located at the interface, proving the importance of {111} planes and twinning in the relaxation process of nanometer-size Ge dots.
Publisher
AMER PHYSICAL SOC
ISSN
1098-0121
Keyword
AG/MGO(001) INTERFACEGE ISLANDSGROWTHSCATTERINGTEMPERATUREDIFFRACTIONMICROSCOPYMORPHOLOGYEVOLUTIONCOHERENT

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.