BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측
Other Titles
Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output
Author
이주현유철희임정호신예지조동진
Issue Date
2020-10
Publisher
대한원격탐사학회
Citation
대한원격탐사학회지, v.36, no.5, pp.1037 - 1051
Abstract
최근 기후변화로 인해 강도가 높은 태풍의 빈도가 높아짐에 따라 태풍 예측의 중요성이 강조되고 있는데, 태풍경로예측에 비해 태풍강도예측에 대한 연구는 미비한 상황이다. 이에 본 연구에서는 딥러닝 모델인Multi-task learning (MTL) 기법을 활용하여 정지궤도기상위성을 활용한 관측자료와 수치예보모델을 융합한 실시간 추정 및 6시간, 12시간 후의 태풍강도예측 모델을 제안하고자 한다. 본 연구에서는 2011년에서 2016년까지 북서태평양에서 발생한 총 142개의 태풍을 대상으로 강도 예측 연구를 시행하였다. 한국 최초의 기상위성인 Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI)를 활용하여 태풍의 관측영상을 추출하였고, National Center of Environmental Prediction (NCEP)에서 제공하는 Climate Forecast System version 2 (CFSv2)를 활용하여 6시간, 12시간 후의 태풍 주변 대기 및 해양 예측변수를 추출하였다. 본 연구에서는 각 입력자료의 활용성을 정량화 하기 위하여, 위성 기반 태풍관측영상만을 활용한 MTL 모델(Scheme 1)과수치예보모델을 융합적으로 활용한 MTL 모델(Scheme 2)을 구축하고, 각 모델의 훈련 및 검증 성능을 정량적으로 비교하였다. 실시간 강도 추정의 결과 scheme 1과 scheme 2에서 비슷한 성능을 보이는 반면, 6시간, 12시간 후 태풍강도예측의 경우 scheme 2에서 각각 13%, 16% 개선된 결과를 보였다. 태풍 단계별 예측성능에 대한분석을 시행한 결과, 저강도 태풍일수록 낮은 평균제곱근오차를 보인 반면, 대부분의 강도 단계에서 평균제곱근편차비는 30% 미만의 값을 보이며 유의미한 검증 결과를 보였다. 이에 본 연구에서 제시한 두가지 모델을 기반으로 2014년 발생한 태풍 HALONG의 시계열검증을 시행하였다. 그 결과, scheme 1의 경우 태풍 초기발달단계에서 태풍의 강도를 약 20 kts가량 과대 추정하는 경향을 보이는데, 환경예측자료를 융합한 scheme 2에서는오차가 약 5 kts가량으로 과대 추정 경향이 줄어들었다. 본 연구에서 제시하는 현재, 6시간, 12시간 후 강도를 동시에 추출하는MTL 모델은 Single-tasking model 대비 약 300%의 시간 효율을 보이며, 향후 신속한 태풍 예보 정보 추출에 큰 기여를 할 수 있을 것으로 기대된다.
URI
https://scholarworks.unist.ac.kr/handle/201301/49502
DOI
10.7780/kjrs.2020.36.5.3.4
ISSN
1225-6161
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU