BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지
Other Titles
Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches
Author
심성문김우혁이재세강유진임정호권춘근김성용
Issue Date
2020-10
Publisher
대한원격탐사학회
Citation
대한원격탐사학회지, v.36, no.5, pp.1109 - 1123
Abstract
국토 대부분이 산림으로 구성되어 있는 대한민국은 매 년 많은 산불이 발생한다. 산불은 토양의 전단강도를 약화시켜 산사태에 취약한 토양층을 만들기도 하고, 수목의 복구가능여부에 따라 다른 계획 설립이 필요하기 때문에 산불피해면적 뿐만 아니라 피해강도에 대한 파악도 중요하다. 위성 원격탐사를 통한 산불피해강도 추정 연구가 많이 수행되어 왔으나, NDVI(Normalized Difference Vegetation Index)와 NBR(Normalized Burn Ratio) 등과 같은 단일 인자의 시계열 변화만을 이용하여 피해강도를 파악하기에는 한계가 있다. 본 연구에서는 Sentinel-1A SAR-C (Synthetic Aperture Radar-C)와 Sentinel-2A MSI(Multi Spectral Instrument)센서의 자료를 이용하여 기계학습방법을 통한 산불 피해강도 탐지 모델들을 제시하였다. 2017년 5월 삼척, 2019년 4월 강릉·동해, 2019년 4월 고성·속초 총 세개의 산불사례를 이용하여 RF(Random forest), LR(Logistic regression), SVM(Support Vector Machine)기계학습 모델을 구축하였다. 연구결과, random forest 모델이 82.3%의 총정확도로 가장 높은 성능을 보여주었다. 모델의 범용성 및 학습자료 민감도 확인을 위해 사례교차검증도 추가 시행하였는데, 그 결과 사례들의 시기적 차이에 의한 식생활력 및 재생도의 차이에 민감도가 높음을 확인하였다. 이는 추후 다양한 시공간적 사례를 추가할 시 개선이 될 것으로 보인다.
URI
https://scholarworks.unist.ac.kr/handle/201301/49501
DOI
10.7780/kjrs.2020.36.5.3.9
ISSN
1225-6161
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU