File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신현석

Shin, Hyeon Suk
Lab for Carbon and 2D Materials
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition

Author(s)
Gillard, Daniel J.Genco, ArmandoAhn, SeongjoonLyons, Thomas P.Ma, Kyung YeolJang, A-RangSevers Millard, TobyTrichet, Aurelien A. P.Jayaprakash, RahulGeorgiou, KyriacosLidzey, David G.Smith, Jason M.Shin, Hyeon SukTartakovskii, Alexander, I
Issued Date
2021-01
DOI
10.1088/2053-1583/abc5a1
URI
https://scholarworks.unist.ac.kr/handle/201301/48863
Fulltext
https://iopscience.iop.org/article/10.1088/2053-1583/abc5a1
Citation
2D MATERIALS, v.8, no.1, pp.011002
Abstract
Two-dimensional semiconducting transition metal dichalcogenides embedded in optical microcavities in the strong exciton-photon coupling regime may lead to promising applications in spin and valley addressable polaritonic logic gates and circuits. One significant obstacle for their realization is the inherent lack of scalability associated with the mechanical exfoliation commonly used for fabrication of two-dimensional materials and their heterostructures. Chemical vapor deposition offers an alternative scalable fabrication method for both monolayer semiconductors and other two-dimensional materials, such as hexagonal boron nitride. Observation of the strong light-matter coupling in chemical vapor grown transition metal dichalcogenides has been demonstrated so far in a handful of experiments with monolayer molybdenum disulfide and tungsten disulfide. Here we instead demonstrate the strong exciton-photon coupling in microcavities composed of large area transition metal dichalcogenide/hexagonal boron nitride heterostructures made from chemical vapor deposition grown molybdenum diselenide and tungsten diselenide encapsulated on one or both sides in continuous few-layer boron nitride films also grown by chemical vapor deposition. These transition metal dichalcogenide/hexagonal boron nitride heterostructures show high optical quality comparable with mechanically exfoliated samples, allowing operation in the strong coupling regime in a wide range of temperatures down to 4 Kelvin in tunable and monolithic microcavities, and demonstrating the possibility to successfully develop large area transition metal dichalcogenide based polariton devices.
Publisher
IOP PUBLISHING LTD
ISSN
2053-1583
Keyword (Author)
transition metal dichalcogenidesoptical microcavitystrong light–matter interactionhexagonal boron nitridechemical vapour depositionvan der Waals heterostructures
Keyword
POLARITONS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.