BROWSE

Related Researcher

Author's Photo

Kwon, Young-Nam
Superior Membrane-based Advanced Research & Technology (SMART) Lab
Research Interests
  • Membrane, Reverse(Forward) osmosis, Membrane distillation, Hydrate-induced ice desalination

ITEM VIEW & DOWNLOAD

Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance
Author
Sinha Ray, SaikatDangayach, RaghavKwon, Young-Nam
Issue Date
2021-02
Publisher
Elsevier BV
Citation
CHEMICAL ENGINEERING JOURNAL, v.405, pp.126702
Abstract
With the emergence of membrane fouling as a prominent issue in long-term MD performance, it has become imperative to manufacture superhydrophobic membranes with antibacterial properties. In this study, a novel superhydrophobic and antibacterial membrane is fabricated using trichloro(1H,1H,2H,2H-perfluorooctyl)silane (TPFOS) and titanium dioxide nanoparticles (TiO2-NPs) as chemical modifiers. The virgin PVDF membrane was pre-treated using PEG-co-PMAA, followed by plasma treatment, to enhance the single bondCOOH and single bondOH groups on the top layer and promote formation of coordinate bonds on the membrane surface to TiO2. TPFOS was used to impart a superhydrophobic behavior to the titanium-enriched membrane surface. Membrane characteristics were investigated using SEM-EDS, FT-IR, AFM, XPS, porosimetry, and tensile strength analysis. The PVDF/PP-PT/Ti/Si (polyvinylidene difluoride/ coated PEG-co-PMAA-plasma treated/titanium nanoparticles/perfluorooctyl silane) composite membrane showed a superior contact angle of ~152° and a better self-cleaning ability than that of the pristine PVDF membrane. Plasma treatment of the membrane results in increasing the porosity of the membrane by the mechanism of polymer ablation. Furthermore, the superhydrophobic membrane displayed superior performance due to enhanced water flux and improved salt rejection over long-term DCMD operation. It also possessed excellent antibacterial properties, exhibiting a bacterial reduction of ~99% when tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This investigation demonstrates a simple approach to design multifunctional membranes showing anti-wetting, anti-bio-fouling, self-cleaning, and robust characteristics in MD desalination operations.
URI
https://scholarworks.unist.ac.kr/handle/201301/48761
URL
https://www.sciencedirect.com/science/article/pii/S1385894720328308
DOI
10.1016/j.cej.2020.126702
ISSN
1385-8947
Appears in Collections:
UEE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU