INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.45, no.46, pp.24146 - 24158
Abstract
According to global trend of transition to a hydrogen society, needs for alternative hydrogen (H-2) production methods have been on the rise. Among them, methanol steam reforming (MSR) in a membrane reactor (MR) has received a great attention due to its improved H-2 yield and compact design. In this study, 3 types of economic analysis - itemized cost estimation, sensitivity analysis, and uncertainty analysis - and integrative carbon footprint analysis (iCFA) were carried out to investigate economic and environmental feasibility. Unit H-2 production costs of MSR in a packed-bed reactor (PBR) and an MR for various H-2 production capacities of 30, 100, 300, and 700 m(3) h(-1) and CO2 emission rates for both a PBR and an MR in H-2 production capacity of 30 m(3) h(-1) were estimated. Through itemized cost estimation, unit H-2 production costs of a PBR and an MR were obtained and scenario analysis was carried out to find a minimum H-2 production cost. Sensitivity analysis was employed to identify key economic factors. In addition, comprehensive uncertainty analysis reflecting unpredictable fluctuation of key economic factors of reactant, labor, and natural gas obtained from sensitivity analysis was also performed for a PBR and an MR by varying them both simultaneously and individually. Through iCFA, lowered CO2 emission rates were obtained showing environmental benefit of MSR in an MR. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.