File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김효일

Kim, Hyoil
Wireless & Mobile Networking Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Fast Discovery of Spectrum Opportunities in Cognitive Radio Networks

Author(s)
Kim, HyoilShin, K.G.
Issued Date
2008-10-15
DOI
10.1109/DYSPAN.2008.30
URI
https://scholarworks.unist.ac.kr/handle/201301/46846
Fulltext
https://ieeexplore.ieee.org/document/4658241
Citation
IEEE DySPAN : 3rd IEEE Symposia on New Frontiers in Dynamic Spectrum Access Networks, pp.220 - 231
Abstract
We address the problem of rapidly discovering spectrum opportunities for seamless service provisioning for secondary users (SUs) in cognitive radio networks (CRNs). Specifically, we propose an efficient sensing-sequence that incurs a small opportunity-discovery delay by considering (1) the probability that a spectrum band (or a channel) may be available at the time of sensing, (2) the duration of sensing on a channel, and (3) the channel capacity. We derive the optimal sensing-sequence for channels with homogeneous capacities, and a suboptimal sequence for channels with heterogeneous capacities for which the problem of finding the optimal sensing-sequence is shown to be NP-hard. To support the proposed sensing-sequence, we also propose a channel-management strategy that optimally selects and updates the list of backup channels. A hybrid of maximum likelihood (ML) and Bayesian inference is also introduced for flexible estimation of ON/OFF channel-usage patterns and prediction of channel availability when sensing produces infrequent samples. The proposed schemes are evaluated via in-depth simulation. For the scenarios we considered, the proposed suboptimal sequence is shown to achieve close-to-optimal performance, reducing the opportunity-discovery delay by up to 47% over an existing probability-based sequence. The hybrid estimation strategy is also shown to outperform the ML-only strategy by reducing the overall opportunity-discovery delay by up to 34%.
Publisher
IEEE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.