File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박장웅

Park, Jang-Ung
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Transparent and Stretchable Electrode using Nanowires for Wearable Electronics

Author(s)
Park, Jang-Ung
Issued Date
2017-04-20
URI
https://scholarworks.unist.ac.kr/handle/201301/38702
Citation
2017 한국물리학회 봄학술논문발표회
Abstract
Recently, wearable electronics detecting the physiological change for the diagnosis of disease have attracted extensive interests globally. Among them, contact lens is one of the most attractive candidate for the continuous and wireless health monitoring. To realize these personal see-through, devices all device components are required to be transparent and stretchable in order to be integrated into the multiplexed sensor system including wearable soft contact lenses. However, the transparent and stretchable sensors integrated on the biomaterials are not yet been realized. In this talk, we presented an unconventional approach to form transparent, flexible and sensitive multiplexed sensors for diagnosing diabetes and glaucoma based on hybrid nanostructures using one-dimensional metal nanowires and two-dimensional graphene. Additionally, the entirely integrated sensors on the contact lens are designed to be R (resistance) L (inductance) C (capacitance) structure operating via radio frequency for wireless and real-time sensing. In this respect, power sources, associated circuitry, and interconnect electrodes are not required in this system. We further present real-time in-vivo glucose monitoring in rabbit and ex-vivo intraocular pressure sensing in bovine eyeballs wirelessly for applications in wearable electronics. The advance of these electronics using hybrid structures provides a route towards future electronics.
Publisher
한국물리학회

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.