File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김병수

Kim, Byeong-Su
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Layer-by-Layer-Assembled Multilayer Films for Transcutaneous Drug and Vaccine Delivery

Author(s)
Su, XingfangKim, Byeong-SuKim, Sara R.Hammond, Paula T.Irvine, Darrell J.
Issued Date
2009-11
DOI
10.1021/nn900928u
URI
https://scholarworks.unist.ac.kr/handle/201301/3847
Fulltext
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=73249126042
Citation
ACS NANO, v.3, no.11, pp.3719 - 3729
Abstract
We describe protein- and oligonuclecitide-loaded layer-by-layer (LbL)-assembled multilayer films incorporating a hydrolytically degradable polymer for transcutaneous drug or vaccine delivery. Films were constructed based on electrostatic interactions between a cationic poly(beta-amino ester) (denoted Poly-1) with a model protein antigen, ovalbumin (ova), and/or immunostimulatory CpG (cytosine-phosphate diester-guanine-rich) DNA oligonucleotide adjuvant molecules. Linear growth of nanoscale Poly-1/ova bilayers was observed. Dried ova protein-loaded films rapidly deconstructed when rehydrated in saline solutions, releasing ova as nonaggregated/nondegraded protein, suggesting that the structure of biomolecules integrated into these multilayer films is preserved during release. Using confocal fluorescence microscopy and an in vivo murine ear skin model, we demonstrated delivery of ova from LbL films Into barrier-disrupted skin, uptake of the protein by skin-resident antigen-presenting cells (Langerhans cells), and transport of the antigen to the skin-draining lymph nodes. Dual incorporation of ova and CpG oligonucleotides into the nanolayers of LbL films enabled dual release of the antigen and adjuvant with distinct kinetics for each component; ova was rapidly released, while CpG was released in a relatively sustained manner. Applied as skin patches, these films delivered ova and CpG to Langerhans cells in the skin. To our knowledge, this is the first demonstration of LbL films applied for the delivery of biomolecules into skin. This approach provides a new route for storage of vaccines and other immunotherapeutics in a solid-state thin film for subsequent delivery into the immunologically rich milieu of the skin.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.