File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

서용원

Seo, Yongwon
Advanced Clean Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Influence of Competitive Inclusion of CO2 and N(2 )on sII Hydrate-Flue Gas Replacement for Energy Recovery and CO2 Sequestration

Author(s)
Choi, WonjungLee, YohanMok, JunghoonSeo, Yongwon
Issued Date
2020-06
DOI
10.1021/acs.est.0c00583
URI
https://scholarworks.unist.ac.kr/handle/201301/36824
Fulltext
https://pubs.acs.org/doi/10.1021/acs.est.0c00583
Citation
ENVIRONMENTAL SCIENCE & TECHNOLOGY, v.54, no.12, pp.7562 - 7569
Abstract
This study investigated the structural transformation, guest distributions, and the extent of replacement in CH4 + C3H8-flue gas replacement occurring in sII hydrates via gas chromatography, NMR spectroscopy, and powder X-ray diffraction (PXRD). Simulated flue gas (CO2 (20%) + N-2 (80%)) was injected into an sII CH4 (90%) + C3H8 (10%) hydrate for guest exchange. The extent of replacement occurring in CH4 + C3H8 -flue gas replacement was much lower than that of CH4 + C3H8-CO2 replacement. Furthermore, C-13 NMR spectra and PXRD patterns revealed that unlike CH4 + C3H8-CO2 replacement, CH4 + C3H8 - flue gas replacement did not undergo any structural transformation during the replacement (i.e., iso-structural replacement in the sII hydrate). Rietveld refinement of PXRD patterns of gas hydrates after replacement using flue gas injection demonstrated that CO2 molecules occupied both the small (5(12)) and large (5(12)6(4)) cages, whereas N-2 molecules occupied only the small (5(12)) cages. CO2 and N-2 were not complementary but competitive in replacing CH4 in the small (5(12)) cages, which contributed to the maintenance of the cage stability of the initial sII hydrate and thus, resulted in a lower extent of replacement. The experimental results obtained in this study provide valuable insights on the accurate replacement mechanism and cage-specific guest exchange behavior of sII hydrates using flue gas injection for energy recovery and CO2 sequestration.
Publisher
AMER CHEMICAL SOC
ISSN
0013-936X
Keyword
CARBON-DIOXIDE REPLACEMENTENHANCED CH4 RECOVERYMETHANE HYDRATECH4/CO2 REPLACEMENTMARINE-SEDIMENTSGLOBAL INVENTORYPOROUS SEDIMENTDEPRESSURIZATIONRESERVOIRSEXCHANGE

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.