BROWSE

Related Researcher

Author's Photo

Im, Jungho
Intelligent Remote sensing and geospatial Information Science (IRIS) Lab
Research Interests
  • Remote sensing, Geospatial modeling, Disaster monitoring and management, Climate change

ITEM VIEW & DOWNLOAD

Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days
Author
Yoo, CheolheeIm, JunghoCho, DongjinYokoya, NaotoXia, JunshiBechtel, Benjamin
Issue Date
2020-05
Publisher
MDPI
Citation
REMOTE SENSING, v.12, no.9, pp.1398
Abstract
Land surface temperature (LST) is used as a critical indicator for various environmental issues because it links land surface fluxes with the surface atmosphere. Moderate-resolution imaging spectroradiometers (MODIS) 1 km LSTs have been widely utilized but have the serious limitation of not being provided under cloudy weather conditions. In this study, we propose two schemes to estimate all-weather 1 km Aqua MODIS daytime (1:30 p.m.) and nighttime (1:30 a.m.) LSTs in South Korea for humid summer days. Scheme 1 (S1) is a two-step approach that first estimates 10 km LSTs and then conducts the spatial downscaling of LSTs from 10 km to 1 km. Scheme 2 (S2), a one-step algorithm, directly estimates the 1 km all-weather LSTs. Eight advanced microwave scanning radiometer 2 (AMSR2) brightness temperatures, three MODIS-based annual cycle parameters, and six auxiliary variables were used for the LST estimation based on random forest machine learning. To confirm the effectiveness of each scheme, we have performed different validation experiments using clear-sky MODIS LSTs. Moreover, we have validated all-weather LSTs using bias-corrected LSTs from 10 in situ stations. In clear-sky daytime, the performance of S2 was better than S1. However, in cloudy sky daytime, S1 simulated low LSTs better than S2, with an average root mean squared error (RMSE) of 2.6 degrees C compared to an average RMSE of 3.8 degrees C over 10 stations. At nighttime, S1 and S2 demonstrated no significant difference in performance both under clear and cloudy sky conditions. When the two schemes were combined, the proposed all-weather LSTs resulted in an average R-2 of 0.82 and 0.74 and with RMSE of 2.5 degrees C and 1.4 degrees C for daytime and nighttime, respectively, compared to the in situ data. This paper demonstrates the ability of the two different schemes to produce all-weather dynamic LSTs. The strategy proposed in this study can improve the applicability of LSTs in a variety of research and practical fields, particularly for areas that are very frequently covered with clouds.
URI
https://scholarworks.unist.ac.kr/handle/201301/36798
URL
https://www.mdpi.com/2072-4292/12/9/1398
DOI
10.3390/rs12091398
ISSN
2072-4292
Appears in Collections:
UEE_Journal Papers
Files in This Item:
000543394000045.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU