File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Propagation Control of Octahedral Tilt in SrRuO(3)via Artificial Heterostructuring

Author(s)
Jeong, Seung GyoHan, GyeongtakSong, SehwanMin, TaewonMohamed, Ahmed YousefPark, SungkyunLee, JaekwangJeong, Hu YoungKim, Young-MinCho, Deok-YongChoi, Woo Seok
Issued Date
2020-08
DOI
10.1002/advs.202001643
URI
https://scholarworks.unist.ac.kr/handle/201301/36790
Fulltext
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202001643
Citation
ADVANCED SCIENCE, v.7, no.6, pp.2001643
Abstract
Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilt of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin-film lattice parameters. In this study, a method to selectively engineer the octahedral bonding geometries is proposed, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering is developed using atomically designed SrRuO3/SrTiO3(SRO/STO) superlattices. In particular, the propagation of RuO(6)octahedral tilt within the SRO layers having identical thicknesses is systematically controlled by varying the thickness of adjacent STO layers. This leads to a substantial modification in the electromagnetic properties of the SRO layer, significantly enhancing the magnetic moment of Ru. This approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
Publisher
WILEY
ISSN
2198-3844
Keyword (Author)
artificial heterostructuringocthahedral distortionstructural phase transitions
Keyword
THIN-FILMSSRRUO3PEROVSKITEOXIDESUPERCONDUCTIVITYTRANSITIONSSYMMETRYMETALS

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.