File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백종범

Baek, Jong-Beom
Center for Dimension-Controllable Organic Frameworks
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Two-Dimensional Organic Network Structures for Energy Conversion and Storage

Author(s)
Magmood, JaveedBaek, Jong-Beom
Issued Date
2018-05-14
URI
https://scholarworks.unist.ac.kr/handle/201301/36495
Fulltext
http://ma.ecsdl.org/content/MA2018-01/8/762.abstract
Citation
The 233rd Meeting of the Electrochemical Society
Abstract
Since the discovery of graphene in 2004,1 conjugated two-dimensional (2D) organic network structures have attracted immense interest due to their unusual electronic, optoelectronic, magnetic and electrocatalytic properties. In addition, their tunable structures and properties promise to offer more opportunities than graphene in various applications. However, even after years of intensive exploration of 2D materials in science and technology, facile and scalable methods capable of producing stable 2D network polymers with uniformly decorated heteroatoms with/without holes remain limited. To overcome these issues, new layered 2D organic network structures have been designed and synthesized. They have uniformly distributed heteroatoms,2 holes with heteroatoms3 and transition metal nanoparticles on the holes.4 The structures were confirmed by scanning tunneling microscopy (STM). Based on the stoichiometry of the basal plane, they were, respectively, designated C3N, C2N and M@C2N (M = Co, Ni, Pd, Pt, Ru). Their electronic and electrical properties were evaluated by electrooptical and electrochemical measurements along with density-functional theory (DFT) calculations. The results suggest that these newly-developed 2D network polymers offer greater opportunities, from wet-chemistry to device applications.
Publisher
The Electrochemical Society

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.