File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이주용

Yi, Jooyong
Programming Languages and Software Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

A case for dynamic reverse-code generation to debug non-deterministic programs

Author(s)
Yi, Jooyong
Issued Date
2013-09-19
DOI
10.4204/EPTCS.129.27
URI
https://scholarworks.unist.ac.kr/handle/201301/35630
Citation
Electronic Proceedings in Theoretical Computer Science, pp.419 - 428
Abstract
Backtracking (i.e., reverse execution) helps the user of a debugger to naturally think backwards along the execution path of a program, and thinking backwards makes it easy to locate the origin of a bug. So far backtracking has been implemented mostly by state saving or by checkpointing. These implementations, however, inherently do not scale. Meanwhile, a more recent backtracking method based on reverse-code generation seems promising because executing reverse code can restore the previous states of a program without state saving. In the literature, there can be found two methods that generate reverse code: (a) static reverse-code generation that pre-generates reverse code through static analysis before starting a debugging session, and (b) dynamic reverse-code generation that generates reverse code by applying dynamic analysis on the fly during a debugging session. In particular, we espoused the latter one in our previous work to accommodate non-determinism of a program caused by e.g., multi-threading. To demonstrate the usefulness of our dynamic reverse-code generation, this article presents a case study of various backtracking methods including ours. We compare the memory usage of various backtracking methods in a simple but nontrivial example, a bounded-buffer program. In the case of non-deterministic programs such as this bounded-buffer program, our dynamic reverse-code generation outperforms the existing backtracking methods in terms of memory efficiency.
Publisher
Electronic Proceedings in Theoretical Computer Science
ISSN
2075-2180

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.