File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

유춘상

Yoo, Chun Sang
Combustion and Propulsion Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Conditional moment closure modelling for ignition in thermally stratified ISO-octane/air mixtures

Author(s)
Salehi, FTalei, MHawkes, ERYoo, Chun SangLucchini, TD'Errico, GKook, S
Issued Date
2014-12-08
URI
https://scholarworks.unist.ac.kr/handle/201301/34996
Citation
19th Australasian Fluid Mechanics Conference, AFMC 2014
Abstract
This paper presents a premixed combustion model based on the first order conditional moment closure (CMC) method for simulation of combustion of iso-octane, which is a single stageignition hydrocarbon fuel under homogeneous charge compression ignition (HCCI) conditions. The model is implemented into the open source C++ computational fluid dynamic (CFD) code known as OpenFOAM. To evaluate the performance of the CFD-CMC solver, a set of direct numerical simulation (DNS) data is used. The data set includes five cases featuring ignition of thermally stratified iso-octane/air mixtures with a mean temperature of 1035 K. The effects of variation of initial temperature fluctuations, turbulence intensity and integral length scale are studied. It is shown that the results from the CFD-CMC solver are in excellent agreement with the DNS for cases in which a low level of conditional fluctuations is present. However, a higher level of these fluctuations leads to an increased deviation of the predicted peak heat release rate and ignition delay time from those of the DNS. A transport equation for the conditional variance is also derived for premixed combustion under HCCI conditions. Assessment of the conditional variance equation using the DNS data shows that correlation between dissipation and conditional fluctuation and correlation between reaction and conditional fluctuations are the dominant sources of conditional fluctuations in the case with a thermal-stratification level of 60 K.
Publisher
Australasian Fluid Mechanics Society
ISSN
0000-0000

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.