File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김병수

Kim, Byeong-Su
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Work-Function Engineering by Surface Modification of Hematite Photoelectrode via Layer-by-Layer Assembly for Water Splitting

Author(s)
Jeon, DasomChoi, YeongkyuChoi, YuriKim, NayoungKim, Byeong-SuRyu, Jungki
Issued Date
2017-09-19
URI
https://scholarworks.unist.ac.kr/handle/201301/34292
Citation
European Materials Research Society (E-MRS) 2017 Fall Meeting
Abstract
Artificial photosynthesis has drawn great attention for decades as a promising solution to energy and environmental problems. For example, we can produce valuable chemicals (e.g., formate, synthesis gas, and methanol) from abundant carbon dioxide and water through a series of photoelectrochemical processes in a carbon-neutral manner. For the successful development of efficient and stable photosynthetic devices, it is critical to precisely assemble various functional materials such as semiconductors for exciton generation, conducting materials for exciton dissociation and charge transport, and redox catalysts for target-chemical reactions. Here, we report the improvement of an efficient and stable, hematite-based photoelectrode for solar water splitting by layer-by-layer assembly (LbL) of cationic graphene oxide (GO) nanosheets and anionic molecular metal oxides as a charge transporting/separation material and water oxidation catalyst, respectively. It was found that their serial deposition significantly develops the photocatalytic performance and stability of the hematite photoelectrode by promoting charge transport and transfer across the electrode/electrolyte interface. Unexpectedly, it was also found that deposition of alternating layers of cationic and anionic functional materials allow us to engineer work-function of hematite photoelectrode beneficial for charge transport by forming an interfacial dipole layer at the surface of hematite. We believe that the present study can provide not only a general and simple method to fabricate an efficient photosynthetic device, but also an insight to scientists and engineers for designing of a novel electrochemical/photoelectrochemical device.
Publisher
European Materials Research Society

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.