File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김재익

Kim, Jae-Ick
Neural Circuit and Neurodegenerative Disease Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage e52069 -
dc.citation.title ELIFE -
dc.citation.volume 9 -
dc.contributor.author Lee, Hyunah -
dc.contributor.author Lee, Hye Yeong -
dc.contributor.author Lee, Byeong Eun -
dc.contributor.author Gerovska, Daniela -
dc.contributor.author Park, Soo Yong -
dc.contributor.author Zaehres, Holm -
dc.contributor.author Araúzo-Bravo, Marcos J -
dc.contributor.author Kim, Jae-Ick -
dc.contributor.author Ha, Yoon -
dc.contributor.author Schöler, Hans R -
dc.contributor.author Kim, Jeong Beom -
dc.date.accessioned 2023-12-21T17:36:28Z -
dc.date.available 2023-12-21T17:36:28Z -
dc.date.created 2020-07-06 -
dc.date.issued 2020-06 -
dc.description.abstract Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy. -
dc.identifier.bibliographicCitation ELIFE, v.9, pp.e52069 -
dc.identifier.doi 10.7554/eLife.52069 -
dc.identifier.issn 2050-084X -
dc.identifier.scopusid 2-s2.0-85086937412 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/32993 -
dc.identifier.url https://elifesciences.org/articles/52069 -
dc.identifier.wosid 000543715600001 -
dc.language 영어 -
dc.publisher ELIFE SCIENCES PUBLICATIONS LTD -
dc.title Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Biology -
dc.relation.journalResearchArea Life Sciences & Biomedicine - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus RNA-SEQ EXPERIMENTS -
dc.subject.keywordPlus NEURAL STEM-CELLS -
dc.subject.keywordPlus ENHANCE FUNCTIONAL RECOVERY -
dc.subject.keywordPlus ADULT HUMAN FIBROBLASTS -
dc.subject.keywordPlus DIRECT CONVERSION -
dc.subject.keywordPlus EXPRESSION ANALYSIS -
dc.subject.keywordPlus THERAPY -
dc.subject.keywordPlus MOUSE -
dc.subject.keywordPlus FATE -
dc.subject.keywordPlus SPECIFICATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.