BROWSE

Related Researcher

Author's Photo

Choi, Nam-Soon
Energy Materials Lab
Research Interests
  • Rechargeable lithium battery, electrolytes for next generation Mg and Na battery

ITEM VIEW & DOWNLOAD

Electrolyte Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Electrolyte Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges
Author
Kim, KoeunMa, HyunsooPark, SewonChoi, Nam-Soon
Issue Date
2020-05
Publisher
AMER CHEMICAL SOC
Citation
ACS ENERGY LETTERS, v.5, no.5, pp.1537 - 1553
Abstract
Electrolyte additives have been explored to attain significant breakthroughs in the long-term cycling performance of lithium-ion batteries (LIBs) without sacrificing energy density; this has been achieved through the development of stable electrode interfacial structures and the elimination of reactive substances. Here we highlight the potential and the challenges raised by studies on electrolyte additives toward addressing the interfacially induced deterioration of high-capacity electrodes with a focus on Ni-rich layered oxides and Si, which are expected to satisfy the growing demands for high-energy-density batteries. We also discuss issues with the design of electrolyte additives for practical viability. A deep understanding of the roles of existing electrolyte additives depending on their functional groups will aid in the design of functional additive moieties capable of building robust interfacial layers, scavenging undesired reactive species, and suppressing the gas generation that causes safety hazards and shortened lifetimes of LIBs.
URI
https://scholarworks.unist.ac.kr/handle/201301/31985
URL
https://pubs.acs.org/doi/full/10.1021/acsenergylett.0c00468#
DOI
10.1021/acsenergylett.0c00468
ISSN
2380-8195
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU