File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

양창덕

Yang, Changduk
Advanced Tech-Optoelectronic Materials Synthesis Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor

Author(s)
Sun, ChenkaiQin, ShuchengWang, RuiChen, ShanshanPan, FeiQiu, BeibeiShang, ZiyaMeng, LeiZhang, ChunfengXiao, MinYang, ChangdukLi, Yongfang
Issued Date
2020-01
DOI
10.1021/jacs.9b09939
URI
https://scholarworks.unist.ac.kr/handle/201301/31317
Fulltext
https://pubs.acs.org/doi/10.1021/jacs.9b09939
Citation
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.142, no.3, pp.1465 - 1474
Abstract
Achieving efficient charge transfer at small frontier molecular orbital offsets between donor and acceptor is crucial for high performance polymer solar cells (PSCs). Here we synthesize a new wide band gap polymer donor, PTQ11, and a new low band gap acceptor, TPT10, and report a high power conversion efficiency (PCE) PSC (PCE = 16.32%) based on PTQ11-TPT10 with zero HOMO (the highest occupied molecular orbital) offset (Delta EHOMO(D-A)). TPT10 is a derivative of Y6 with monobromine instead of bifluorine substitution, and possesses upshifted lowest unoccupied molecular orbital energy level (E-LUMO) of -3.99 eV and E-HOMO of -5.52 eV than Y6. PTQ11 is a derivative of low cost polymer donor PTQ10 with methyl substituent on its quinoxaline unit and shows upshifted E-HOMO of -5.52 eV, stronger molecular crystallization, and better hole transport capability in comparison with PTQ10. The PSC based on PTQ11-TPT10 shows highly efficient exciton dissociation and hole transfer, so that it demonstrates a high PCE of 16.32% with a higher V-oc of 0.88 V, a large J(sc) of 24.79 mA cm(-2), and a high FF of 74.8%, despite the zero Delta EHOMO(D-A) value between donor PTQ11 and acceptor TPT10. The PCE of 16.32% is one of the highest efficiencies in the PSCs. The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero Delta EHOMO(D-A), which is highly valuable for understanding the charge transfer process and achieving high PCE of PSCs.
Publisher
AMER CHEMICAL SOC
ISSN
0002-7863
Keyword
PHOTOVOLTAIC CELLSCHARGE SEPARATIONSELF-ORGANIZATIONENERGY-LOSSPERFORMANCEELECTRODES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.