File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

임한권

Lim, Hankwon
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica

Author(s)
Kurade, Mayur B.Xiong, Jiu-QiangGovindwar, Sanjay P.Roh, Hyun-SeogSaratale, Ganesh D.Jeon, Byong-HunLim, Hankwon
Issued Date
2019-06
DOI
10.1016/j.chemosphere.2019.03.086
URI
https://scholarworks.unist.ac.kr/handle/201301/31287
Fulltext
https://www.sciencedirect.com/science/article/pii/S0045653519305223?via%3Dihub
Citation
CHEMOSPHERE, v.225, pp.696 - 704
Abstract
Plants serve as appropriate markers of worldwide pollution because they are present in almost every corner of the globe and bioaccumulate xenobiotic chemicals from their environment. The potential of a semi-aquatic plant, Ipomoea aquatica, to uptake and metabolize sulfamethoxazole (SMX) was investigated in this study. I. aquatica exhibited 100% removal of 0.05 mg L −1 SMX from synthetic media within 30 h. The I. aquatica achieved 93, 77 and 72% removal of SMX at 0.2, 0.5 and 1 mg L −1 , respectively, after 48 h. This indicated that removal efficiency of I. aquatica was deteriorating at high concentrations of SMX. The chlorophyll and carotenoid content of I. aquatica was insignificantly influenced by SMX irrespective of its high concentration. Similarly, scanning electron microscopy (SEM) showed that exposure to SMX had an insignificant impact on morphology of the plant organelles. The mechanisms of removal by I. aquatica were explored by evaluating contributions of bioadsorption, bioaccumulation and biodegradation. There was negligible adsorption of SMX to plant roots. Accumulation of SMX within plant roots and stems was not observed; however, I. aquatica accumulated 17% of SMX in leaves. Thus, the major mechanism of elimination of SMX was biodegradation, which accounted for 82% removal of SMX. Gas chromatography-mass spectrometry (GC-MS) confirmed that I. aquatica biodegraded SMX into simpler compounds, and generated 4-aminophenol as its final product. A laboratory scale phytoreactor was used to investigate the application of I. aquatica in a simulated system, where it achieved 49% removal of SMX (0.2 mg L −1 ) in 10 d. © 2019 Elsevier Ltd
Publisher
Elsevier Ltd
ISSN
0045-6535
Keyword (Author)
BioaccumulationBiodegradationIpomoea aquaticaPhytoreactorPhytoremediationSulfamethoxazole
Keyword
PLANTSPHARMACEUTICALSANTIBIOTICSSOILSPERSONAL-CARE PRODUCTSWASTE-WATER TREATMENTCONSTRUCTED WETLANDREMOVAL EFFICIENCYTYPHA SPP.PHYTOREMEDIATION

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.