Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer
Author
Hong, Ji A.Jung, Eui DaeYu, Jae ChoulKim, Dae WooNam, Yun SeokOh, InseonLee, TeunsongYoo, Jung-WooCho, ShinukSong, Myoung Hoon
Issue Date
2020-01
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v.12, no.2, pp.2417 - 2423
Abstract
Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low-temperature processibility. To achieve highly efficient SnO2-based PeSCs, it is necessary to control the oxygen vacancies in the SnO2 layer, since the electrical and optical properties vary depending on the oxidation state of Sn. This study demonstrates that the performance of PeSCs may be improved by using nitrogen-doped graphene oxide (NGO) as an oxidizing agent for SnO2. Since NGO changes the oxidation state of the Sn in SnO2 from Sn2+ to Sn4+, the oxygen vacancies in SnO2 can be reduced using NGO. Multiple devices are fabricated, and various techniques are used to assess their performance, including X-ray photoelectron spectroscopy, dark current analysis, and the dependence of the open-circuit voltage on light intensity. Compared with the average power conversion efficiency (PCE) of control devices, PeSCs with SnO2:NGO composite layers exhibit greater PCEs with less deviation. Therefore, the introduction of NGO in a SnO2 layer can be regarded as an effective method of controlling the oxidation state of SnO2 to improve the performance of PeSCs.
URI
https://scholarworks.unist.ac.kr/handle/201301/31146
URL
https://pubs.acs.org/doi/10.1021/acsami.9b17705
DOI
10.1021/acsami.9b17705
ISSN
1944-8244
Appears in Collections:
MSE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU