Although immune checkpoint blockade therapies have demonstrated clinical efficacy in cancer treatment, harnessing this strategy is largely encumbered by resistance in multiple cancer settings. Here, we show that tumor-infiltrating T cells are severely exhausted in the microsatellite stable (MSS) colorectal cancer (CRC), a representative example of PD-1 blockade-resistant tumors. In MSS CRC, we found wound healing signature to be up-regulated and that T cell exhaustion is driven by vascular endothelial growth factor-A (VEGF-A). We report that VEGF-A induces the expression of transcription factor TOX in T cells to drive exhaustion-specific transcription program in T cells. Using a combination of in vitro, ex vivo, and in vivo mouse studies, we demonstrate that combined blockade of PD-1 and VEGF-A restores the antitumor functions of T cells, resulting in better control of MSS CRC tumors.
Publisher
American Association for the Advancement of Science