Convergence analysis of coarse mesh finite difference method applied to two-group three-dimensional neutron diffusion problem
Cited 2 times in
Cited 0 times in
- Title
- Convergence analysis of coarse mesh finite difference method applied to two-group three-dimensional neutron diffusion problem
- Author
- Lee, Deokjung
- Issue Date
- 2012-09
- Publisher
- TAYLOR & FRANCIS LTD
- Citation
- JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, v.49, no.9, pp.926 - 936
- Abstract
- This article presents the convergence analysis of the coarse mesh finite difference (CMFD) method applied to two-group (2-G) three-dimensional (3D) neutron diffusion problem. Two CMFD algorithms are examined: one-node (1-N) CMFD and two-node (2-N) CMFD. Two test problems are used for the study of the convergence behavior: a model problem of homogeneous 2-G 3D eigenvalue problem and the NEACRP LWR transient benchmark problem. The convergence rates of the 1-N and 2-N CMFD algorithms are numerically measured in terms of the convergence of current correction factors (CCFs). The numerical test results are presented as well as the comparison with the previous analytical study. Overall, 1-N CMFD with the CCF relaxation shows a comparable performance to 2-N CMFD for the realistic 3D rod ejection transients.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/3077
- URL
- http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84866081651
- DOI
- 10.1080/00223131.2012.712478
- ISSN
- 0022-3131
- Appears in Collections:
- NUE_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.